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I. INTRODUCTION

Most carbon and graphite materials originate in the pyrolysis of organic

precur.-ors derived from oil or coal, and the critical stage in establishing

the layered molecular architecture is the transition through the liquid-

crystalline state known as the carbonaceous mesophase. The extensive

"chicken-wire" molecules formed by aromatic polymerization are stiff and

strong in their layer planes, but the weak bonding between adjacent parallel

layers permits turbostratic stacking (the absence of crystailline registry

between layers). As illustrated by Fig. 1, the layers can bend, splay, and

twist to form microstructures quite diffetent from those of other ceramic ,

materials.

Various processes have been developed to form carbon into filaments.

When those processes also produce strong preferred orientations of graphitic

layers parallel to the filament, the tensile moduli may exceed those of all

competitive fibers. Although the most commonly used fibers today are produced

by spinning and carbonizing polyacrylonitrile (PAN), the highest tensile

moduli are attained in fibers spun from pitch in the mesophase (liquid

crystalline) state. Both fiber types represent solutions to the basic micro-

structural problem of how to realize the strength and stiffness of the two-

dimensional graphitic layer in a three-dimensional body.

Mesophase carbon fibers exemplify the manipulation of basic mesophase

mechanisms to form favorable microstructure in carbon products. 2  The struc-

tural details generally are too fine to be resolved by the polarized-light

techniques that are useful for such mesophase products as petroleum coke.

However, tensile fracture of the high-modulus fibers occurs with extensive

shear, and the resulting serrated fracture surfaces provide good structural

definition for SEM observations. The filaments in Fig. 2 include three basic

fiber morphologies, all of which can be sketched plausibly in terms of

mesophase disclinations.
3
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11. THE CARBONACEOUS MESOPHASE

I

The polarized-light micrographs and layer morphologies of mesophase

spherules formed in a pyrolyzed pitch (Fig. 3), although now familiar to

carbon technologists, may seem strange to metallurgists or ceramists. The

three-dimensional layer morphology also seemed unlikely to G. H. Taylor, who

first tentatively proposed that structure in 1961. 5  In subsequent work with

J. D. Brooks, 6 he applied selected-area electron diffraction to confirm what

nas come to be known as the Brooks and Taylor structure. Those pioneering

workers then went on to demonstrate that the mesophase transformation is the 7

basic mechanism determining both the microstructure and graphitizability of

carbon materials produced by the pyrolysis of organic liquids.
7

The carbonaceous mesophase usually appears in the pyrolysis of tars or

ctner organic precursors at about 400 0C, at which point polymerization reac-

tions produce large, flat molecules with weights of 500 amu or higher. The

mrolecules have widely varying size and structural detail, but their parallel

alignment establishes a discotic nematic order similar to that of conventional

liquid crystals for which the structural units are rods rather than discs.

Mesophase formatior may be viewed as a liquid-state ordering transformation,

but the molecules align only approximately parallel, and bend, splay, and8
twist deformations are accommodated with little strain energy. Soon after I
the mesophase spherules appear, bulk mesophase begins to form by the

coalescence process illustrated in Fig. 4. The resulting lamelliform mor-

phology extends throughout the body without interruption by grain boundaries.

%
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111. MESOPHASE MORPHOLOGY AND DISCLINATION STRUCTURE.

In tblk mesophase observed by crossed polarizers (Fig. 5), -

crosses appear as prominent features of the polarized light extirctir .

tours. The nodes and crosses rotate either with or against the piar.e of

polarization when ti e plane of polarization (or the microscope stage) is

rotated, but their centers remain fixed at specific points on the polished

surface of the bulk mesophase. When the layer orientations are mapped, as in

Fig. 6, the nodes and crosses correspond to disclinations of the same type as

those observed in nematic liquid crystals. 10  They are essentially layer-

stacking discontinuities that result from the ease of bend, splay, and twist

in the liquid crystal.
1 1 I

Disclinations are rare in ordinary crystalline materials. Figure 7

indicates the reason: The distortions at the core of a crystal disclination

are so large that disclinations are prohibited from forming, except by entrap-

ment mechanisms, such as the hardening of a liquid crystal. Figure 7 also

illustrates how a Nabarro circuit (analogous to a Burgers circuit for a

crystal dislocation) can be used to define the rotational strength of a

disclination. 12

Models of the wedge and twist disclinations commonly found in the car-

boriaceous mesophase are sketched in Fig. 8. Under observation by polarized

>ght, the ±7 disclinations appear as nodes and the ±2r disclinations appear

as crosses. The twist disclination represents the case in which the

%iscicination lir,e runs normal to the Nabarro rotation vector.

K Knowing the way mesophase behaves when in contact with carbon fiber is

.mpartant to, the fabricatior of carbon-fiber-reinforced carbon-matrix com-

pos1te, mater:d 1 s. Mesophase layers ncrmally align parallel to the substrate

.i amerts to produce d sheath effect (Fig. 9 that dominates the formation of
crostrotjrt , r. tno matt .. The matri : isc, :nations within a fiber

rdle car. tr.u e , olIv predted from tte Ft,,;ret of filaments surround-
T ,g a ch rr, at I I chan,!Ie I A skt rt " - o ; t:- is i n c Iuded r F i g,. 9

,u snrw that ,.h e crr,s A + .sc, at or. s,, 'I nat te discent iruj s as

F-'- _ -;, -< 4 - -_: -,. .-'. ,.,4 .,-. --.- ----,.---. ----v ". .- -"-' . ,,. .....", -, ,-,
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sketched in Fig. 8; instead, the layers of the core tilt to form a saddlelike

conf igurat ion.

MESOPHASE FIBER -2

RANDOM STRUCTURE -.- CENTERLINE OF

RADIAL STRUCTURE CONTINUOUS CORE

CARBON FIBERS

i- WEDGE DISCLINATION

X - 21 WEDGE DISC LINATION

Fig. 9. Mesophase alignment within a fiber bundle; from Ref. 13.
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IV. MESOPHASE DEFORMATION AND DISCLINATION REACTIONS

The presentation of this paper included a seven-minute film prepared by

hot-stage microscopy, to demonstrate the dynamic aspects of mesophase

nehavior. The film, made by M. Buechler and C. B. Ng of our Materials

Sciences Laboratory, summarizes their observations of mesophase coalescence,

disclination reactions, and mesophase ,eformation in the pyrolysis of a

petroleum pitch (Ashland A2 4O). 
1,15 [The film is available at cost ($25), in

either 16-mm film or VHS videocassette, by application to the address given on

the cover.] The various structural phenomena appear with good clarity at a

free surface because the mesophase layers preferentially stand perpendicular

to the surface.

Over sixty years ago, Friede116 showed that all possible reactions

netween ±r and ±2r disclinations can occur in conventional nematic liquid

crystals; they also occur in the carbonaceous mesophase, including:

Annihilation and formation reactions, (±2n) + (i2-n) - 0

Combination and dissociation reactions, (±n) + (±i) -- (±2i)

As pyrolysis proceeds, the viscosity rises and the disclination reactions slow

well before the mesophase hardens to a coke. The spatial geometry of reac-

tions between disclinations of different order, e.g., (±i) + (;2 ) --- (T),

has been studied by sequentially sectioning quenched mesophase.17  Such

reactions consist of three disclinations meeting at a reaction point whose

direction of motion determines the direction of the reaction (Fig. 10).

Mesophase flow is fundamental to mesophase-fiber spinning and needle-coke

formation as well as to the disclination-structure formation within the
products. Mesophase rods can be drawn by uniaxial deformation to produce

fibrous morphologies consisting of nearly pure wedge disclination lines

running parallel to the draw direction. Biaxial deformation, as experienced

by the wall of an expanding bubble, produces lamellar morphologies with folded
4 ~J 9mesophase layers; as sketched in Fig. 11, the folds are bounded by dis-

clinations that vary from pure twist to pure wedge. If the depicted disclina-

tion loop subsequently undergoes extension, it can deform to a pair of closely

17



spaced wedge disclinations of opposite sign, poised for an annihi lation

reaction if the viscosity has not risen too high.

REACTION

POIN-

Fig. 10. Spatial sketch of a diselination reaction; from R~ef. 3

7..
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V. STABILIZATION OF DISCLINATION AHRAYS
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We recently extended our stabilization experiments to mesophase-

impregnated fiber composites for which the mismatch in thermal expansion

between fiber and mesophase forces an extensi ve network of shrinkage

cJcks.2  Composite panels as thick as 8 mm have been stabilized. Although

oxidation levels higher than 15 wt% were involved, the oxygen was evolved from

the matrix during carbonization without damage to fiber or matrix and without

loss in net carbon yield.

Ile

%

2 p

_ • , , . - -, • o - - -., , -o. • • - .-° . . .. °. . . . . - -. - , , . .- - , - -. • . . . , ° S



VI. DISCUSSION
I.

Our understanding of the mesophase and its microstructures is still
V,

rudimentary, but observations of deformation effects and disclination reac-

tions are sufficient to suggest how the quite different fiber morphologies of

Fig. 2 originate. The extensive draw involved in filament spinning must

produce a dense array of wedge disclinations lying within easy reaction

distance. The extent to which reactions occur depends on viscosity and rate

of cooling after spinning. Under conditions of low viscosity and gentle

quench, disclination annihilation reactions may proceed to completion, leaving

a single +27 wedge disclination at the center of a radial filament; upon car-

bonization, the characteristic open wedge is formed by mesophase shrinkage IF

perpendicular to the layers. The random-core filament results from higher

mesophase viscosity and more severe quenching to trap an appreciable number of

disclinations to form the random core. The oval filament, then, represents an

intermediate state of disclination reaction that leaves two +7 wedge

disclinations separated by an oriented core; the oval shape results, again,

from anisotropic mesophase shrinkage during carbonization.

The essential elements of a mesophase technology can now be perceived for

the preparation of carbon materials having controlled disclination arrays.

Following the path developed empirically for mesophase carbon fibers, that

technology consists of manipulating the mesophase in its plastic state to form

desired disclination structures, then oxidizing the mesophase to stabilize the

shape and microstructure for carbonization. How far such paths can be pursued

to produce useful products--pencil leads, to offer a very practical example--

depends critically on questions of mesophase behavior that have not yet

received careful scrutiny; for example, What determines the formation of

jistributed shrinkage cracks instead of massive fractures when a mesophase

body of complex microstructure is carbonized?

*This discussion of disclination structures has been developed entirely in

" terms of the carbonaceous mesophase. Disclinations must also be anticipated

-n carbons formed by processes other than the mesophase transformation, e.g.,

25



from the glass-forming precursors used to produce PAN-based carbon fibers.

From extensive studies by high-resolution electron microscopy, Oberlin and

coworkers2 2 have proposed the disclinated model of Fig. 14 for PAN-based

carbon fiber. What distinguishes that model from the mesophase carbon fibers

are the close spacing of disclinations and the fine elongated porosity thait

appears to limit those fibers to lower density levels.
.:-

WEDGE DISCLINATIONS

-ir -27r +27r +"r

PORES ."

LONGITUDINAL
SECTION kII

I ' :' 'I EXTERNAL

SURFACE

50 nm

Fig. 14 . Structural model for PAN-based carbon fiber; after Guigon -t al.
(Ref. 22).
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sa reech ts progctra aime a dicn waI fiathe mn th rm tIes anIst i tirI

rapidl evolv h ig ste pea tire syte m. e (l'n ihi Li ,gaKI i tir r nj' t lit ins t- I S''
relserchemcl are tesierid/a la hirave,)eti incuin 2 hmii 'in3

Chermihsic yis atr:La iir icii v: AtoI'- ari -re,''it ry lii i --'. ,.s"ri t

rans' an I fl4 vesigh qt dy vso nmicss; chek ) mcal aos elect orict-!- Irplsllt !-i ;rl-'t
cheistryas checal dynamicsp, env~rnma chemist er trac -t reei n ion;,-1A

spacecr, aft strcturlc mechanicst , conaminaionn' thr atI ai e r-ia t.
miatr'als, hih temetiure theurme phanicsn, gas-'- !iei: aii -, - a
psedi ce mialerand eAcme lasetr, devlomt incl'.di'rg eicr smelAn s,

spectroscop, opi-cl resiinat-irs. : ea ciitrA ,eil, ntuit i'n, ; r'' i, i t ir'
petcts ndcoun~trmeasure. deim itiutdaN.e uesI) c r

llieisr ail Ph it1 ics lahiativ Atns, l'er, And - j,;. , Ir t

.sit'd'sheriot'i ics, 'i' ligh satrn,j tate-spt areiic e'hr''nia ri I > it

radia ie ilaidresao aissir, plume sensI pr ' iat I ,n it ' ilmo i r I I2

app " ie lae spec't t rd iv lae chemistrye ,,las i,te r wi',itee-r s sir cell

hsI'sl-fI hat tr elect rchmisty spc vai u .inie rave th -i it " I v A

mteIa, l I,' fra ti an s . jA rc phenome tna3, tir iiii Itueniv ts la ,
rSits I) ; Itic m tal nan Idt,'I'tors,1 ao' teuiei stI Sarls

A ie r i.scie n c laui ra tr v 'rkia'V 'riuti.ati ia ic t rr 'eislrt

a ';' e r , ta1ult -ul rit n I' tipet.r sytm, art iAial n e li n' r .- rr

1 F1r l e , A ru i t IR-'sr'archu n a r I At I ireAnli trod'si!, iiil't It' r lI, r
pe 'IcsIrcs .1 r, ,ciim.'riiiinil semicunlocturs , a i s hrd e n I - n elrItr-ii tis , 1ni . 1

I w nt , l l-sat ' rersir A'sti' l Iro a t insa n d ,'ini i '-it r'ins;

si, i', n ii't r it ir, s ,w iI 1iru av ''ilr I, tir-'t n,'e -m'i i.'i rnt

'p' l I rahm Im I'trc, miIw ceri it,'r wave ttu'ri rm-icm
itr t eie Itr ' treI-reuAIc h str iarls1 itennasi, ir sysems eecr rIgo ti

r~ red -l;ils roiiAI' r In I e i 'im1 hisitesr , an ne t a y t 'r~ : nI '

ir ri its. r 1 r, i .
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